^ Jump up to: a b c Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. (December 2012). "Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2163–96. doi:10.1016/S0140-6736(12)61729-2. PMC 6350784. PMID 23245607.
A 2018 study suggested that three types should be abandoned as too simplistic.[56] It classified diabetes into five subgroups, with what is typically described as type 1 and autoimmune late-onset diabetes categorized as one group, whereas type 2 encompasses four categories. This is hoped to improve diabetes treatment by tailoring it more specifically to the subgroups.[57]

Sometimes the simplest technology is the most important. Jeniece Ilkowitz, CDE, a research nurse and diabetes educator at New York University Langone Health in New York City, recommends that all her patients have this app and set it to show a medical alert on the lock screen, information that can be critical to first responders in an emergency. The Medical ID app is part of the Health app that comes standard on iPhones (therefore, there's no rating on Apple), and it’s simple to set up. If you have an Android device, you’ll have to download it from Google Play.

The good news is that prevention plays an important role in warding off these complications. By maintaining tight control of your blood glucose—and getting it as close to normal as possible—you’ll help your body function in the way that it would if you did not have diabetes. Tight control helps you decrease the chances that your body will experience complications from elevated glucose levels.
Type 1 diabetes is partly inherited, with multiple genes, including certain HLA genotypes, known to influence the risk of diabetes. In genetically susceptible people, the onset of diabetes can be triggered by one or more environmental factors,[40] such as a viral infection or diet. Several viruses have been implicated, but to date there is no stringent evidence to support this hypothesis in humans.[40][41] Among dietary factors, data suggest that gliadin (a protein present in gluten) may play a role in the development of type 1 diabetes, but the mechanism is not fully understood.[42][43]
However, the observation that normalization of glucose in type 2 diabetes occurred within days after bariatric surgery, before substantial weight loss (15), led to the widespread belief that surgery itself brought about specific changes mediated through incretin hormone secretion (16,17). This reasoning overlooked the major change that follows bariatric surgery: an acute, profound decrease in calorie intake. Typically, those undergoing bariatric surgery have a mean body weight of ∼150 kg (15) and would therefore require a daily calorie intake of ∼13.4 MJ/day (3,200 kcal/day) for weight maintenance (18). This intake decreases precipitously at the time of surgery. The sudden reversal of traffic into fat stores brings about a profound change in intracellular concentration of fat metabolites. It is known that under hypocaloric conditions, fat is mobilized first from the liver and other ectopic sites rather than from visceral or subcutaneous fat stores (19). This process has been studied in detail during more moderate calorie restriction in type 2 diabetes over 8 weeks (20). Fasting plasma glucose was shown to be improved because of an 81% decrease in liver fat content and normalization of hepatic insulin sensitivity with no change in the insulin resistance of muscle.
Whole-body insulin resistance is the earliest predictor of type 2 diabetes onset, and this mainly reflects muscle insulin resistance (26). However, careful separation of the contributions of muscle and liver have shown that early improvement in control of fasting plasma glucose level is associated only with improvement in liver insulin sensitivity (20,21). It is clear that the resumption of normal or near-normal diurnal blood glucose control does not require improvement in muscle insulin sensitivity. Although this finding may at first appear surprising, it is supported by a wide range of earlier observations. Mice totally lacking in skeletal muscle insulin receptors do not develop diabetes (27). Humans who have the PPP1R3A genetic variant of muscle glycogen synthase cannot store glycogen in muscle after meals but are not necessarily hyperglycemic (28). Many normoglycemic individuals maintain normal blood glucose levels with a degree of muscle insulin resistance identical to those with type 2 diabetes (29).

The treatment of low blood sugar consists of administering a quickly absorbed glucose source. These include glucose containing drinks, such as orange juice, soft drinks (not sugar-free), or glucose tablets in doses of 15-20 grams at a time (for example, the equivalent of half a glass of juice). Even cake frosting applied inside the cheeks can work in a pinch if patient cooperation is difficult. If the individual becomes unconscious, glucagon can be given by intramuscular injection.

^ Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, Accurso A, Frassetto L, Gower BA, McFarlane SI, Nielsen JV, Krarup T, Saslow L, Roth KS, Vernon MC, Volek JS, Wilshire GB, Dahlqvist A, Sundberg R, Childers A, Morrison K, Manninen AH, Dashti HM, Wood RJ, Wortman J, Worm N (January 2015). "Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base". Nutrition. 31 (1): 1–13. doi:10.1016/j.nut.2014.06.011. PMID 25287761.
The kidney doctor, called a nephrologist, will plan your treatment with you, your family and your dietitian. Two things to keep in mind for keeping your kidneys healthy are controlling high blood pressure in conjunction with an ACE inhibitor and following your renal diabetic diet. Restricting protein in your diet also might be helpful. You and your dietitian can plan your diet together. For Kidney and Diabetes friendly recipes click here to visit our Kidney Kitchen.
John P. Cunha, DO, is a U.S. board-certified Emergency Medicine Physician. Dr. Cunha's educational background includes a BS in Biology from Rutgers, the State University of New Jersey, and a DO from the Kansas City University of Medicine and Biosciences in Kansas City, MO. He completed residency training in Emergency Medicine at Newark Beth Israel Medical Center in Newark, New Jersey.
Like other glucose trackers, Glucose Buddy lets you input blood glucose, medication, and meals, and track trends over time. But it also includes an extensive food database, and it lets you scan bar codes to grab nutrition information from food products. It syncs to the Apple Health app and tracks your steps and other physical activity. All that data can be exported to printable reports you can bring to your medical visits. You’ll need to subscribe to the premium version to access the A1C calculator and get rid of the ads. (The current premium cost is $14.99 per month or $59.99 per year.)
You may be able to manage your type 2 diabetes with healthy eating and being active, or your doctor may prescribe insulin, other injectable medications, or oral diabetes medicines to help control your blood sugar and avoid complications. You’ll still need to eat healthy and be active if you take insulin or other medicines. It’s also important to keep your blood pressure and cholesterol under control and get necessary screening tests.
Learning about the disease and actively participating in the treatment is important, since complications are far less common and less severe in people who have well-managed blood sugar levels.[76][77] The goal of treatment is an HbA1C level of 6.5%, but should not be lower than that, and may be set higher.[78] Attention is also paid to other health problems that may accelerate the negative effects of diabetes. These include smoking, elevated cholesterol levels, obesity, high blood pressure, and lack of regular exercise.[78] Specialized footwear is widely used to reduce the risk of ulceration, or re-ulceration, in at-risk diabetic feet. Evidence for the efficacy of this remains equivocal, however.[79]

In those with impaired glucose tolerance, diet and exercise either alone or in combination with metformin or acar

Risk factors for type 2 diabetes include obesity, high cholesterol, high blood pressure, and physical inactivity. The risk of developing type 2 diabetes also increases as people grow older. People who are over 40 and overweight are more likely to develop type 2 diabetes, although the incidence of this type of diabetes in adolescents is growing. Diabetes is more common among Native Americans, African Americans, Hispanic Americans and Asian Americans/Pacific Islanders. Also, people who develop diabetes while pregnant (a condition called gestational diabetes) are more likely to develop type 2 diabetes later in life.
Morris AP, Voight BF, Teslovich TM, Ferreira T, Segrè AV, Steinthorsdottir V, Strawbridge RJ, Khan H, Grallert H, Mahajan A, Prokopenko I, Kang HM, Dina C, Esko T, Fraser RM, Kanoni S, Kumar A, Lagou V, Langenberg C, Luan J, Lindgren CM, Müller-Nurasyid M, Pechlivanis S, Rayner NW, Scott LJ, Wiltshire S, Yengo L, Kinnunen L, Rossin EJ, Raychaudhuri S, Johnson AD, Dimas AS, Loos RJ, Vedantam S, Chen H, Florez JC, Fox C, Liu CT, Rybin D, Couper DJ, Kao WH, Li M, Cornelis MC, Kraft P, Sun Q, van Dam RM, Stringham HM, Chines PS, Fischer K, Fontanillas P, Holmen OL, Hunt SE, Jackson AU, Kong A, Lawrence R, Meyer J, Perry JR, Platou CG, Potter S, Rehnberg E, Robertson N, Sivapalaratnam S, Stančáková A, Stirrups K, Thorleifsson G, Tikkanen E, Wood AR, Almgren P, Atalay M, Benediktsson R, Bonnycastle LL, Burtt N, Carey J, Charpentier G, Crenshaw AT, Doney AS, Dorkhan M, Edkins S, Emilsson V, Eury E, Forsen T, Gertow K, Gigante B, Grant GB, Groves CJ, Guiducci C, Herder C, Hreidarsson AB, Hui J, James A, Jonsson A, Rathmann W, Klopp N, Kravic J, Krjutškov K, Langford C, Leander K, Lindholm E, Lobbens S, Männistö S, Mirza G, Mühleisen TW, Musk B, Parkin M, Rallidis L, Saramies J, Sennblad B, Shah S, Sigurðsson G, Silveira A, Steinbach G, Thorand B, Trakalo J, Veglia F, Wennauer R, Winckler W, Zabaneh D, Campbell H, van Duijn C, Uitterlinden AG, Hofman A, Sijbrands E, Abecasis GR, Owen KR, Zeggini E, Trip MD, Forouhi NG, Syvänen AC, Eriksson JG, Peltonen L, Nöthen MM, Balkau B, Palmer CN, Lyssenko V, Tuomi T, Isomaa B, Hunter DJ, Qi L; Wellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium, Shuldiner AR, Roden M, Barroso I, Wilsgaard T, Beilby J, Hovingh K, Price JF, Wilson JF, Rauramaa R, Lakka TA, Lind L, Dedoussis G, Njølstad I, Pedersen NL, Khaw KT, Wareham NJ, Keinanen-Kiukaanniemi SM, Saaristo TE, Korpi-Hyövälti E, Saltevo J, Laakso M, Kuusisto J, Metspalu A, Collins FS, Mohlke KL, Bergman RN, Tuomilehto J, Boehm BO, Gieger C, Hveem K, Cauchi S, Froguel P, Baldassarre D, Tremoli E, Humphries SE, Saleheen D, Danesh J, Ingelsson E, Ripatti S, Salomaa V, Erbel R, Jöckel KH, Moebus S, Peters A, Illig T, de Faire U, Hamsten A, Morris AD, Donnelly PJ, Frayling TM, Hattersley AT, Boerwinkle E, Melander O, Kathiresan S, Nilsson PM, Deloukas P, Thorsteinsdottir U, Groop LC, Stefansson K, Hu F, Pankow JS, Dupuis J, Meigs JB, Altshuler D, Boehnke M, McCarthy MI; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012 Sep;44(9):981-90. doi: 10.1038/ng.2383. Epub 2012 Aug 12.
^ Imperatore G, Boyle JP, Thompson TJ, Case D, Dabelea D, Hamman RF, Lawrence JM, Liese AD, Liu LL, Mayer-Davis EJ, Rodriguez BL, Standiford D (December 2012). "Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2050: dynamic modeling of incidence, mortality, and population growth". Diabetes Care. 35 (12): 2515–20. doi:10.2337/dc12-0669. PMC 3507562. PMID 23173134. Archived from the original on 2016-08-14.
Type 2 diabetes is more common in adults and accounts for around 90% of all diabetes cases. When you have type 2 diabetes, your body does not make good use of the insulin that it produces. The cornerstone of type 2 diabetes treatment is healthy lifestyle, including increased physical activity and healthy diet. However, over time most people with type 2 diabetes will require oral drugs and/or insulin to keep their blood glucose levels under control. Learn more.
Studies in type 1 patients have shown that in intensively treated patients, diabetic eye disease decreased by 76%, kidney disease decreased by 54%, and nerve disease decreased by 60%. More recently the EDIC trial has shown that type 1 diabetes is also associated with increased heart disease, similar to type 2 diabetes. However, the price for aggressive blood sugar control is a two to three fold increase in the incidence of abnormally low blood sugar levels (caused by the diabetes medications). For this reason, tight control of diabetes to achieve glucose levels between 70 to120 mg/dl is not recommended for children under 13 years of age, patients with severe recurrent hypoglycemia, patients unaware of their hypoglycemia, and patients with far advanced diabetes complications. To achieve optimal glucose control without an undue risk of abnormally lowering blood sugar levels, patients with type 1 diabetes must monitor their blood glucose at least four times a day and administer insulin at least three times per day. In patients with type 2 diabetes, aggressive blood sugar control has similar beneficial effects on the eyes, kidneys, nerves and blood vessels.
Other potentially important mechanisms associated with type 2 diabetes and insulin resistance include: increased breakdown of lipids within fat cells, resistance to and lack of incretin, high glucagon levels in the blood, increased retention of salt and water by the kidneys, and inappropriate regulation of metabolism by the central nervous system.[10] However, not all people with insulin resistance develop diabetes, since an impairment of insulin secretion by pancreatic beta cells is also required.[13]
Most people who develop type 2 diabetes first have insulin resistance, a condition in which the body's cells use insulin less efficiently than normal. As insulin resistance develops, more and more insulin is needed to keep blood sugar levels in the normal range. To keep up with the increasing need, insulin-producing cells in the pancreas (called beta cells) make larger amounts of insulin. Over time, the beta cells become less able to respond to blood sugar changes, leading to an insulin shortage that prevents the body from reducing blood sugar levels effectively. Most people have some insulin resistance as they age, but inadequate exercise and excessive weight gain make it worse, greatly increasing the likelihood of developing type 2 diabetes.
A: Fasting plasma glucose and weight change 2 years after randomization either to gastric banding or to intensive medical therapy for weight loss and glucose control. Data plotted with permission from Dixon et al. (13). B: Early changes in fasting plasma glucose level following pancreatoduodenal bypass surgery. A decrease into the normal range was seen within 7 days. Reproduced with permission from Taylor (98).
Clearly separate from the characteristic lack of acute insulin secretion in response to increase in glucose supply is the matter of total mass of β-cells. The former determines the immediate metabolic response to eating, whereas the latter places a long-term limitation on total possible insulin response. Histological studies of the pancreas in type 2 diabetes consistently show an ∼50% reduction in number of β-cells compared with normal subjects (66). β-Cell loss appears to increase as duration of diabetes increases (67). The process is likely to be regulated by apoptosis, a mechanism known to be increased by chronic exposure to increased fatty acid metabolites (68). Ceramides, which are synthesized directly from fatty acids, are likely mediators of the lipid effects on apoptosis (10,69). In light of new knowledge about β-cell apoptosis and rates of turnover during adult life, it is conceivable that removal of adverse factors could result in restoration of normal β-cell number, even late in the disease (66,70). Plasticity of lineage and transdifferentiation of human adult β-cells could also be relevant, and the evidence for this has recently been reviewed (71). β-Cell number following reversal of type 2 diabetes remains to be examined, but overall, it is clear that at least a critical mass of β-cells is not permanently damaged but merely metabolically inhibited.
In obese young people, decreased β-cell function has recently been shown to predict deterioration of glucose tolerance (4,78). Additionally, the rate of decline in glucose tolerance in first-degree relatives of type 2 diabetic individuals is strongly related to the loss of β-cell function, whereas insulin sensitivity changes little (79). This observation mirrors those in populations with a high incidence of type 2 diabetes in which transition from hyperinsulinemic normal glucose tolerance to overt diabetes involves a large, rapid rise in glucose levels as a result of a relatively small further loss of acute β-cell competence (3). The Whitehall II study showed in a large population followed prospectively that people with diabetes exhibit a sudden rise in fasting glucose as β-cell function deteriorates (Fig. 5) (80). Hence, the ability of the pancreas to mount a normal, brisk insulin response to an increasing plasma glucose level is lost in the 2 years before the detection of diabetes, although fasting plasma glucose levels may have been at the upper limit of normal for several years. This was very different from the widely assumed linear rise in fasting plasma glucose level and gradual β-cell decompensation but is consistent with the time course of markers of increased liver fat before the onset of type 2 diabetes observed in other studies (81). Data from the West of Scotland Coronary Prevention Study demonstrated that plasma triacylglycerol and ALT levels were modestly elevated 2 years before the diagnosis of type 2 diabetes and that there was a steady rise in the level of this liver enzyme in the run-up to the time of diagnosis (75).
Home blood sugar (glucose) testing is an important part of controlling blood sugar. One important goal of diabetes treatment is to keep the blood glucose levels near the normal range of 70 to 120 mg/dl before meals and under 140 mg/dl at two hours after eating. Blood glucose levels are usually tested before and after meals, and at bedtime. The blood sugar level is typically determined by pricking a fingertip with a lancing device and applying the blood to a glucose meter, which reads the value. There are many meters on the market, for example, Accu-Check Advantage, One Touch Ultra, Sure Step and Freestyle. Each meter has its own advantages and disadvantages (some use less blood, some have a larger digital readout, some take a shorter time to give you results, etc.). The test results are then used to help patients make adjustments in medications, diets, and physical activities.
The WHO estimates that diabetes mellitus resulted in 1.5 million deaths in 2012, making it the 8th leading cause of death.[12][101] However another 2.2 million deaths worldwide were attributable to high blood glucose and the increased risks of cardiovascular disease and other associated complications (e.g. kidney failure), which often lead to premature death and are often listed as the underlying cause on death certificates rather than diabetes.[101][104] For example, in 2017, the International Diabetes Federation (IDF) estimated that diabetes resulted in 4.0 million deaths worldwide,[8] using modeling to estimate the total number of deaths that could be directly or indirectly attributed to diabetes.[8]
To treat diabetic retinopathy, a laser is used to destroy and prevent the recurrence of the development of these small aneurysms and brittle blood vessels. Approximately 50% of patients with diabetes will develop some degree of diabetic retinopathy after 10 years of diabetes, and 80% retinopathy after 15 years of the disease. Poor control of blood sugar and blood pressure further aggravates eye disease in diabetes.
Insulin is vital to patients with type 1 diabetes - they cannot live without a source of exogenous insulin. Without insulin, patients with type 1 diabetes develop severely elevated blood sugar levels. This leads to increased urine glucose, which in turn leads to excessive loss of fluid and electrolytes in the urine. Lack of insulin also causes the inability to store fat and protein along with breakdown of existing fat and protein stores. This dysregulation, results in the process of ketosis and the release of ketones into the blood. Ketones turn the blood acidic, a condition called diabetic ketoacidosis (DKA). Symptoms of diabetic ketoacidosis include nausea, vomiting, and abdominal pain. Without prompt medical treatment, patients with diabetic ketoacidosis can rapidly go into shock, coma, and even death may result.
Diabetes mellitus (DM), commonly known as diabetes, is a group of metabolic disorders characterized by high blood sugar levels over a prolonged period.[9] Symptoms of high blood sugar include frequent urination, increased thirst, and increased hunger.[2] If left untreated, diabetes can cause many complications.[2] Acute complications can include diabetic ketoacidosis, hyperosmolar hyperglycemic state, or death.[3] Serious long-term complications include cardiovascular disease, stroke, chronic kidney disease, foot ulcers, and damage to the eyes.[2]
Type 2 diabetes usually begins with insulin resistance, a condition in which muscle, liver, and fat cells do not use insulin well. As a result, your body needs more insulin to help glucose enter cells. At first, the pancreas makes more insulin to keep up with the added demand. Over time, the pancreas can’t make enough insulin, and blood glucose levels rise.