Other potentially important mechanisms associated with type 2 diabetes and insulin resistance include: increased breakdown of lipids within fat cells, resistance to and lack of incretin, high glucagon levels in the blood, increased retention of salt and water by the kidneys, and inappropriate regulation of metabolism by the central nervous system.[10] However, not all people with insulin resistance develop diabetes, since an impairment of insulin secretion by pancreatic beta cells is also required.[13]
The development of type 2 diabetes is caused by a combination of lifestyle and genetic factors.[24][26] While some of these factors are under personal control, such as diet and obesity, other factors are not, such as increasing age, female gender, and genetics.[10] Obesity is more common in women than men in many parts of Africa.[27] A lack of sleep has been linked to type 2 diabetes.[28] This is believed to act through its effect on metabolism.[28] The nutritional status of a mother during fetal development may also play a role, with one proposed mechanism being that of DNA methylation.[29] The intestinal bacteria Prevotella copri and Bacteroides vulgatus have been connected with type 2 diabetes.[30]
These diabetes complications are related to blood vessel diseases and are generally classified into small vessel disease, such as those involving the eyes, kidneys and nerves (microvascular disease), and large vessel disease involving the heart and blood vessels (macrovascular disease). Diabetes accelerates hardening of the arteries (atherosclerosis) of the larger blood vessels, leading to coronary heart disease (angina or heart attack), strokes, and pain in the lower extremities because of lack of blood supply (claudication).
The major eye complication of diabetes is called diabetic retinopathy. Diabetic retinopathy occurs in patients who have had diabetes for at least five years. Diseased small blood vessels in the back of the eye cause the leakage of protein and blood in the retina. Disease in these blood vessels also causes the formation of small aneurysms (microaneurysms), and new but brittle blood vessels (neovascularization). Spontaneous bleeding from the new and brittle blood vessels can lead to retinal scarring and retinal detachment, thus impairing vision.

Whole-body insulin resistance is the earliest predictor of type 2 diabetes onset, and this mainly reflects muscle insulin resistance (26). However, careful separation of the contributions of muscle and liver have shown that early improvement in control of fasting plasma glucose level is associated only with improvement in liver insulin sensitivity (20,21). It is clear that the resumption of normal or near-normal diurnal blood glucose control does not require improvement in muscle insulin sensitivity. Although this finding may at first appear surprising, it is supported by a wide range of earlier observations. Mice totally lacking in skeletal muscle insulin receptors do not develop diabetes (27). Humans who have the PPP1R3A genetic variant of muscle glycogen synthase cannot store glycogen in muscle after meals but are not necessarily hyperglycemic (28). Many normoglycemic individuals maintain normal blood glucose levels with a degree of muscle insulin resistance identical to those with type 2 diabetes (29).
Other potentially important mechanisms associated with type 2 diabetes and insulin resistance include: increased breakdown of lipids within fat cells, resistance to and lack of incretin, high glucagon levels in the blood, increased retention of salt and water by the kidneys, and inappropriate regulation of metabolism by the central nervous system.[10] However, not all people with insulin resistance develop diabetes, since an impairment of insulin secretion by pancreatic beta cells is also required.[13]

Also, know that while apps can be incredibly valuable tools, they can’t — and shouldn’t try to — replace individualized medical advice. “It’s still not a person. It’s still not the team,” says Ilkowitz. She advises walking through your apps with your certified diabetes educator to be sure they are appropriate tools for you and that you’re using them correctly.
Findings from the Diabetes Control and Complications Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have clearly shown that aggressive and intensive control of elevated levels of blood sugar in patients with type 1 and type 2 diabetes decreases the complications of nephropathy, neuropathy, retinopathy, and may reduce the occurrence and severity of large blood vessel diseases. Aggressive control with intensive therapy means achieving fasting glucose levels between 70-120 mg/dl; glucose levels of less than 160 mg/dl after meals; and a near normal hemoglobin A1c levels (see below).
Childhood obesity rates are rising, and so are the rates of type 2 diabetes in youth. More than 75% of children with type 2 diabetes have a close relative who has it, too. But it’s not always because family members are related; it can also be because they share certain habits that can increase their risk. Parents can help prevent or delay type 2 diabetes by developing a plan for the whole family:

American Indian/Alaska Native. American Indian/Alaska Native women have the highest rate of diabetes among all racial and ethnic groups in the United States. It is more than twice as common for American Indian/Alaska Native women to be diagnosed with diabetes compared to white women. But rates of diabetes are different in different regions of the United States. Rates are lowest in Alaska Native people and highest in people who are American Indian and live in certain areas of the Southwest.1
Periodontal disease is the most common dental disease affecting those living with diabetes, affecting nearly 22% of those diagnosed. Especially with increasing age, poor blood sugar control increases the risk for gum problems.  In fact, people with diabetes are at a higher risk for gum problems because of poor blood sugar control. As with all infections, serious gum disease may cause blood sugar to rise. This makes diabetes harder to control because you are more susceptible to infections and are less able to fight the bacteria invading the gums.

Gestational diabetes develops in pregnant women who have never had diabetes. If you have gestational diabetes, your baby could be at higher risk for health problems. Gestational diabetes usually goes away after your baby is born but increases your risk for type 2 diabetes later in life. Your baby is more likely to have obesity as a child or teen, and more likely to develop type 2 diabetes later in life too.
×