Type 2 diabetes is more common in adults and accounts for around 90% of all diabetes cases. When you have type 2 diabetes, your body does not make good use of the insulin that it produces. The cornerstone of type 2 diabetes treatment is healthy lifestyle, including increased physical activity and healthy diet. However, over time most people with type 2 diabetes will require oral drugs and/or insulin to keep their blood glucose levels under control. Learn more.

Weight loss surgery in those who are obese is an effective measure to treat diabetes.[103] Many are able to maintain normal blood sugar levels with little or no medication following surgery[104] and long-term mortality is decreased.[105] There however is some short-term mortality risk of less than 1% from the surgery.[106] The body mass index cutoffs for when surgery is appropriate are not yet clear.[105] It is recommended that this option be considered in those who are unable to get both their weight and blood sugar under control.[107][108]


Researchers looked at 5,185 apps for phones running Google's Android software or Apple's iOS system. Out of this total, they found 371 apps that claimed to provide several key components for type 2 diabetes management: recording blood sugar data; reminding patients when they need to do specific things to manage the illness; and educating patients on how to handle conditions like dangerously low or high blood sugar.

American Indian/Alaska Native. American Indian/Alaska Native women have the highest rate of diabetes among all racial and ethnic groups in the United States. It is more than twice as common for American Indian/Alaska Native women to be diagnosed with diabetes compared to white women. But rates of diabetes are different in different regions of the United States. Rates are lowest in Alaska Native people and highest in people who are American Indian and live in certain areas of the Southwest.1
What are symptoms of type 2 diabetes in children? Type 2 diabetes is becoming increasingly common in children, and this is linked to a rise in obesity. However, the condition can be difficult to detect in children because it develops gradually. Symptoms, treatment, and prevention of type 2 diabetes are similar in children and adults. Learn more here. Read now
There are some interesting developments in blood glucose monitoring including continuous glucose sensors. The new continuous glucose sensor systems involve an implantable cannula placed just under the skin in the abdomen or in the arm. This cannula allows for frequent sampling of blood glucose levels. Attached to this is a transmitter that sends the data to a pager-like device. This device has a visual screen that allows the wearer to see, not only the current glucose reading, but also the graphic trends. In some devices, the rate of change of blood sugar is also shown. There are alarms for low and high sugar levels. Certain models will alarm if the rate of change indicates the wearer is at risk for dropping or rising blood glucose too rapidly. One version is specifically designed to interface with their insulin pumps. In most cases the patient still must manually approve any insulin dose (the pump cannot blindly respond to the glucose information it receives, it can only give a calculated suggestion as to whether the wearer should give insulin, and if so, how much). However, in 2013 the US FDA approved the first artificial pancreas type device, meaning an implanted sensor and pump combination that stops insulin delivery when glucose levels reach a certain low point. All of these devices need to be correlated to fingersticks measurements for a few hours before they can function independently. The devices can then provide readings for 3 to 5 days.
Establish your weight goals, enter meal information, and receive customized tips to help you maintain a healthy weight. This app does all the work for you to evaluate your food diary and guide your weight management plan. Easily enter foods into the app by scanning barcodes. Get access to a large food database which can assign grades to food so you can get a quick view of how healthy or unhealthy certain choices can be.
Normally, blood glucose levels are tightly controlled by insulin, a hormone produced by the pancreas. Insulin lowers the blood glucose level. When the blood glucose elevates (for example, after eating food), insulin is released from the pancreas to normalize the glucose level by promoting the uptake of glucose into body cells. In patients with diabetes, the absence of insufficient production of or lack of response to insulin causes hyperglycemia. Diabetes is a chronic medical condition, meaning that although it can be controlled, it lasts a lifetime.
No major organization recommends universal screening for diabetes as there is no evidence that such a program improve outcomes.[55][56] Screening is recommended by the United States Preventive Services Task Force (USPSTF) in adults without symptoms whose blood pressure is greater than 135/80 mmHg.[57] For those whose blood pressure is less, the evidence is insufficient to recommend for or against screening.[57] There is no evidence that it changes the risk of death in this group of people.[56] They also recommend screening among those who are overweight and between the ages of 40 and 70.[58]
Exposure to certain viral infections (mumps and Coxsackie viruses) or other environmental toxins may serve to trigger abnormal antibody responses that cause damage to the pancreas cells where insulin is made. Some of the antibodies seen in type 1 diabetes include anti-islet cell antibodies, anti-insulin antibodies and anti-glutamic decarboxylase antibodies. These antibodies can be detected in the majority of patients, and may help determine which individuals are at risk for developing type 1 diabetes.
Diabetes mellitus is a disease in which a person's blood sugar (blood glucose) is either too high (hyperglycemia) or too low (hypoglycemia) due to problems with insulin regulation in the body. There are two main types of diabetes mellitus, type 1 and type 2. Type 1 diabetes usually occurs during childhood, while type 2 diabetes usually occurs during adulthood, however, rates of both types of diabetes in children, adolescents, and teens is increasing. More men than women have diabetes in the US, and the disease can affect men differently than women.
Insulin is released into the blood by beta cells (β-cells), found in the islets of Langerhans in the pancreas, in response to rising levels of blood glucose, typically after eating. Insulin is used by about two-thirds of the body's cells to absorb glucose from the blood for use as fuel, for conversion to other needed molecules, or for storage. Lower glucose levels result in decreased insulin release from the beta cells and in the breakdown of glycogen to glucose. This process is mainly controlled by the hormone glucagon, which acts in the opposite manner to insulin.[60]

The twin cycle hypothesis of the etiology of type 2 diabetes. During long-term intake of more calories than are expended each day, any excess carbohydrate must undergo de novo lipogenesis, which particularly promotes fat accumulation in the liver. Because insulin stimulates de novo lipogenesis, individuals with a degree of insulin resistance (determined by family or lifestyle factors) will accumulate liver fat more readily than others because of higher plasma insulin levels. In turn, the increased liver fat will cause relative resistance to insulin suppression of hepatic glucose production. Over many years, a modest increase in fasting plasma glucose level will stimulate increased basal insulin secretion rates to maintain euglycemia. The consequent hyperinsulinemia will further increase the conversion of excess calories to liver fat. A cycle of hyperinsulinemia and blunted suppression of hepatic glucose production becomes established. Fatty liver leads to increased export of VLDL triacylglycerol (85), which will increase fat delivery to all tissues, including the islets. This process is further stimulated by elevated plasma glucose levels (85). Excess fatty acid availability in the pancreatic islet would be expected to impair the acute insulin secretion in response to ingested food, and at a certain level of fatty acid exposure, postprandial hyperglycemia will supervene. The hyperglycemia will further increase insulin secretion rates, with consequent enhancement of hepatic lipogenesis, spinning the liver cycle faster and driving the pancreas cycle. Eventually, the fatty acid and glucose inhibitory effects on the islets reach a trigger level that leads to a relatively sudden onset of clinical diabetes. Figure adapted with permission from Taylor (98).

Most strokes happen when a blood clot blocks a blood vessel within or leading to the brain. Type 2 diabetes increases your risk of stroke by two to four times, according to the National Stroke Association. Fortunately, the same steps that will help you prevent heart disease — controlling your blood sugar and blood pressure levels, maintaining a healthy weight, exercising regularly, and not smoking — are also the best ways to help reduce your risk of stroke.


The majority of genetic variations associated with type 2 diabetes are thought to act by subtly changing the amount, timing, and location of gene activity (expression). These changes in expression affect genes involved in many aspects of type 2 diabetes, including the development and function of beta cells in the pancreas, the release and processing of insulin, and cells' sensitivity to the effects of insulin. However, for many of the variations that have been associated with type 2 diabetes, the mechanism by which they contribute to disease risk is unknown.
Normally, blood glucose levels are tightly controlled by insulin, a hormone produced by the pancreas. Insulin lowers the blood glucose level. When the blood glucose elevates (for example, after eating food), insulin is released from the pancreas to normalize the glucose level by promoting the uptake of glucose into body cells. In patients with diabetes, the absence of insufficient production of or lack of response to insulin causes hyperglycemia. Diabetes is a chronic medical condition, meaning that although it can be controlled, it lasts a lifetime.
Diabetes is a disease that occurs when your blood glucose, also called blood sugar, is too high. Blood glucose is your main source of energy and comes from the food you eat. Insulin, a hormone made by the pancreas, helps glucose from food get into your cells to be used for energy. Sometimes your body doesn’t make enough—or any—insulin or doesn’t use insulin well. Glucose then stays in your blood and doesn’t reach your cells.
×