You may be able to manage your type 2 diabetes with healthy eating and being active, or your doctor may prescribe insulin, other injectable medications, or oral diabetes medicines to help control your blood sugar and avoid complications. You’ll still need to eat healthy and be active if you take insulin or other medicines. It’s also important to keep your blood pressure and cholesterol under control and get necessary screening tests.
You may not know if your blood sugar is too high unless you test it yourself. However, you may experience common symptoms such as frequent urination, extreme thirst, blurry vision, and feeling tired. Some factors unrelated to food can make your blood sugar high. This includes not taking your insulin correctly, overeating at a meal, illness, having hormonal changes, and stress.

Diabetes mellitus occurs throughout the world but is more common (especially type 2) in more developed countries. The greatest increase in rates has however been seen in low- and middle-income countries,[101] where more than 80% of diabetic deaths occur.[105] The fastest prevalence increase is expected to occur in Asia and Africa, where most people with diabetes will probably live in 2030.[106] The increase in rates in developing countries follows the trend of urbanization and lifestyle changes, including increasingly sedentary lifestyles, less physically demanding work and the global nutrition transition, marked by increased intake of foods that are high energy-dense but nutrient-poor (often high in sugar and saturated fats, sometimes referred to as the "Western-style" diet).[101][106] The global number of diabetes cases might increase by 48% between 2017 and 2045.[8]

The classic oral glucose tolerance test measures blood glucose levels five times over a period of three hours. Some physicians simply get a baseline blood sample followed by a sample two hours after drinking the glucose solution. In a person without diabetes, the glucose levels rise and then fall quickly. In someone with diabetes, glucose levels rise higher than normal and fail to come back down as fast.
Best of them all I was diagnosed LADA a year ago. Downloaded a bunch of apps and used them all for a month. This one’s easily the winner. Extremely comprehensive, a complete set of features and enough customization to track carb intake; initial no pill and no insulin treatment; then medication only treatment; then long lasting insulin treatment. And I know it’s future proof for when I start the short term insulin and then the pump. Thank you!

Clearly separate from the characteristic lack of acute insulin secretion in response to increase in glucose supply is the matter of total mass of β-cells. The former determines the immediate metabolic response to eating, whereas the latter places a long-term limitation on total possible insulin response. Histological studies of the pancreas in type 2 diabetes consistently show an ∼50% reduction in number of β-cells compared with normal subjects (66). β-Cell loss appears to increase as duration of diabetes increases (67). The process is likely to be regulated by apoptosis, a mechanism known to be increased by chronic exposure to increased fatty acid metabolites (68). Ceramides, which are synthesized directly from fatty acids, are likely mediators of the lipid effects on apoptosis (10,69). In light of new knowledge about β-cell apoptosis and rates of turnover during adult life, it is conceivable that removal of adverse factors could result in restoration of normal β-cell number, even late in the disease (66,70). Plasticity of lineage and transdifferentiation of human adult β-cells could also be relevant, and the evidence for this has recently been reviewed (71). β-Cell number following reversal of type 2 diabetes remains to be examined, but overall, it is clear that at least a critical mass of β-cells is not permanently damaged but merely metabolically inhibited.

Diabetes mellitus type 2 (also known as type 2 diabetes) is a long-term metabolic disorder that is characterized by high blood sugar, insulin resistance, and relative lack of insulin.[6] Common symptoms include increased thirst, frequent urination, and unexplained weight loss.[3] Symptoms may also include increased hunger, feeling tired, and sores that do not heal.[3] Often symptoms come on slowly.[6] Long-term complications from high blood sugar include heart disease, strokes, diabetic retinopathy which can result in blindness, kidney failure, and poor blood flow in the limbs which may lead to amputations.[1] The sudden onset of hyperosmolar hyperglycemic state may occur; however, ketoacidosis is uncommon.[4][5]
Diabetes mellitus is a disease in which a person's blood sugar (blood glucose) is either too high (hyperglycemia) or too low (hypoglycemia) due to problems with insulin regulation in the body. There are two main types of diabetes mellitus, type 1 and type 2. Type 1 diabetes usually occurs during childhood, while type 2 diabetes usually occurs during adulthood, however, rates of both types of diabetes in children, adolescents, and teens is increasing. More men than women have diabetes in the US, and the disease can affect men differently than women.
Gestational diabetes develops in pregnant women who have never had diabetes. If you have gestational diabetes, your baby could be at higher risk for health problems. Gestational diabetes usually goes away after your baby is born but increases your risk for type 2 diabetes later in life. Your baby is more likely to have obesity as a child or teen, and more likely to develop type 2 diabetes later in life too.
^ Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, Veerman JL, Delwiche K, Iannarone ML, Moyer ML, Cercy K, Vos T, Murray CJ, Forouzanfar MH (August 2016). "Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013". BMJ. 354: i3857. doi:10.1136/bmj.i3857. PMC 4979358. PMID 27510511.
Dietary factors also influence the risk of developing type 2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[33][34] The type of fats in the diet are important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk.[26] Eating a lot of white rice appears to play a role in increasing risk.[35] A lack of exercise is believed to cause 7% of cases.[36] Persistent organic pollutants may play a role.[37]
Weight loss surgery in those who are obese is an effective measure to treat diabetes.[103] Many are able to maintain normal blood sugar levels with little or no medication following surgery[104] and long-term mortality is decreased.[105] There however is some short-term mortality risk of less than 1% from the surgery.[106] The body mass index cutoffs for when surgery is appropriate are not yet clear.[105] It is recommended that this option be considered in those who are unable to get both their weight and blood sugar under control.[107][108]
The accepted view has been that the β-cell dysfunction of established diabetes progresses inexorably (79,82,83), whereas insulin resistance can be modified at least to some extent. However, it is now clear that the β-cell defect, not solely hepatic insulin resistance, may be reversible by weight loss at least early in the course of type 2 diabetes (21,84). The low insulin sensitivity of muscle tissue does not change materially either during the onset of diabetes or during subsequent reversal. Overall, the information on the inhibitory effects of excess fat on β-cell function and apoptosis permits a new understanding of the etiology and time course of type 2 diabetes.

Unlike many health conditions, diabetes is managed mostly by you, with support from your health care team (including your primary care doctor, foot doctor, dentist, eye doctor, registered dietitian nutritionist, diabetes educator, and pharmacist), family, and other important people in your life. Managing diabetes can be challenging, but everything you do to improve your health is worth it!
Blood travels throughout your body, and when too much glucose (sugar) is present, it disrupts the normal environment that the organ systems of your body function within. In turn, your body starts to exhibit signs that things are not working properly inside—those are the symptoms of diabetes people sometimes experience. If this problem—caused by a variety of factors—is left untreated, it can lead to a number of damaging complications such as heart attacks, strokes, blindness, kidney failure, and blood vessel disease that may require an amputation, nerve damage, and impotence in men.
Type 1 diabetes mellitus is characterized by loss of the insulin-producing beta cells of the pancreatic islets, leading to insulin deficiency. This type can be further classified as immune-mediated or idiopathic. The majority of type 1 diabetes is of the immune-mediated nature, in which a T cell-mediated autoimmune attack leads to the loss of beta cells and thus insulin.[37] It causes approximately 10% of diabetes mellitus cases in North America and Europe. Most affected people are otherwise healthy and of a healthy weight when onset occurs. Sensitivity and responsiveness to insulin are usually normal, especially in the early stages. Type 1 diabetes can affect children or adults, but was traditionally termed "juvenile diabetes" because a majority of these diabetes cases were found in children.[citation needed]
Change in fasting plasma glucose (A), 2 h post-oral glucose tolerance test (B), and homeostasis model assessment (HOMA-B) insulin secretion (C) during the 16-year follow-up in the Whitehall II study. Of the 6,538 people studied, diabetes developed in 505. Time 0 was taken as the diagnosis of diabetes or as the end of follow-up for those remaining normoglycemic. Redrawn with permission from Tabák et al. (80).
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; Mexican American Type 2 Diabetes (MAT2D) Consortium; Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples (T2D-GENES) Consortium, Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, Horikoshi M, Johnson AD, Ng MC, Prokopenko I, Saleheen D, Wang X, Zeggini E, Abecasis GR, Adair LS, Almgren P, Atalay M, Aung T, Baldassarre D, Balkau B, Bao Y, Barnett AH, Barroso I, Basit A, Been LF, Beilby J, Bell GI, Benediktsson R, Bergman RN, Boehm BO, Boerwinkle E, Bonnycastle LL, Burtt N, Cai Q, Campbell H, Carey J, Cauchi S, Caulfield M, Chan JC, Chang LC, Chang TJ, Chang YC, Charpentier G, Chen CH, Chen H, Chen YT, Chia KS, Chidambaram M, Chines PS, Cho NH, Cho YM, Chuang LM, Collins FS, Cornelis MC, Couper DJ, Crenshaw AT, van Dam RM, Danesh J, Das D, de Faire U, Dedoussis G, Deloukas P, Dimas AS, Dina C, Doney AS, Donnelly PJ, Dorkhan M, van Duijn C, Dupuis J, Edkins S, Elliott P, Emilsson V, Erbel R, Eriksson JG, Escobedo J, Esko T, Eury E, Florez JC, Fontanillas P, Forouhi NG, Forsen T, Fox C, Fraser RM, Frayling TM, Froguel P, Frossard P, Gao Y, Gertow K, Gieger C, Gigante B, Grallert H, Grant GB, Grrop LC, Groves CJ, Grundberg E, Guiducci C, Hamsten A, Han BG, Hara K, Hassanali N, Hattersley AT, Hayward C, Hedman AK, Herder C, Hofman A, Holmen OL, Hovingh K, Hreidarsson AB, Hu C, Hu FB, Hui J, Humphries SE, Hunt SE, Hunter DJ, Hveem K, Hydrie ZI, Ikegami H, Illig T, Ingelsson E, Islam M, Isomaa B, Jackson AU, Jafar T, James A, Jia W, Jöckel KH, Jonsson A, Jowett JB, Kadowaki T, Kang HM, Kanoni S, Kao WH, Kathiresan S, Kato N, Katulanda P, Keinanen-Kiukaanniemi KM, Kelly AM, Khan H, Khaw KT, Khor CC, Kim HL, Kim S, Kim YJ, Kinnunen L, Klopp N, Kong A, Korpi-Hyövälti E, Kowlessur S, Kraft P, Kravic J, Kristensen MM, Krithika S, Kumar A, Kumate J, Kuusisto J, Kwak SH, Laakso M, Lagou V, Lakka TA, Langenberg C, Langford C, Lawrence R, Leander K, Lee JM, Lee NR, Li M, Li X, Li Y, Liang J, Liju S, Lim WY, Lind L, Lindgren CM, Lindholm E, Liu CT, Liu JJ, Lobbens S, Long J, Loos RJ, Lu W, Luan J, Lyssenko V, Ma RC, Maeda S, Mägi R, Männisto S, Matthews DR, Meigs JB, Melander O, Metspalu A, Meyer J, Mirza G, Mihailov E, Moebus S, Mohan V, Mohlke KL, Morris AD, Mühleisen TW, Müller-Nurasyid M, Musk B, Nakamura J, Nakashima E, Navarro P, Ng PK, Nica AC, Nilsson PM, Njølstad I, Nöthen MM, Ohnaka K, Ong TH, Owen KR, Palmer CN, Pankow JS, Park KS, Parkin M, Pechlivanis S, Pedersen NL, Peltonen L, Perry JR, Peters A, Pinidiyapathirage JM, Platou CG, Potter S, Price JF, Qi L, Radha V, Rallidis L, Rasheed A, Rathman W, Rauramaa R, Raychaudhuri S, Rayner NW, Rees SD, Rehnberg E, Ripatti S, Robertson N, Roden M, Rossin EJ, Rudan I, Rybin D, Saaristo TE, Salomaa V, Saltevo J, Samuel M, Sanghera DK, Saramies J, Scott J, Scott LJ, Scott RA, Segrè AV, Sehmi J, Sennblad B, Shah N, Shah S, Shera AS, Shu XO, Shuldiner AR, Sigurđsson G, Sijbrands E, Silveira A, Sim X, Sivapalaratnam S, Small KS, So WY, Stančáková A, Stefansson K, Steinbach G, Steinthorsdottir V, Stirrups K, Strawbridge RJ, Stringham HM, Sun Q, Suo C, Syvänen AC, Takayanagi R, Takeuchi F, Tay WT, Teslovich TM, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tikkanen E, Trakalo J, Tremoli E, Trip MD, Tsai FJ, Tuomi T, Tuomilehto J, Uitterlinden AG, Valladares-Salgado A, Vedantam S, Veglia F, Voight BF, Wang C, Wareham NJ, Wennauer R, Wickremasinghe AR, Wilsgaard T, Wilson JF, Wiltshire S, Winckler W, Wong TY, Wood AR, Wu JY, Wu Y, Yamamoto K, Yamauchi T, Yang M, Yengo L, Yokota M, Young R, Zabaneh D, Zhang F, Zhang R, Zheng W, Zimmet PZ, Altshuler D, Bowden DW, Cho YS, Cox NJ, Cruz M, Hanis CL, Kooner J, Lee JY, Seielstad M, Teo YY, Boehnke M, Parra EJ, Chambers JC, Tai ES, McCarthy MI, Morris AP. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014 Mar;46(3):234-44. doi: 10.1038/ng.2897. Epub 2014 Feb 9.
This British-made diabetes app raised $11,600 on Kickstarter in February 2013. It's a free app for diabetes management that focuses on quick data entry and aesthetically designed interactive charts, as well as reminders that can trigger either at a particular time or in particular location. The app helps people with both type 1 and type 2 diabetes monitor how much and how often they’re eating, their blood glucose levels, and whether they’ve taken their medication.
The connection may be hard to imagine. But the primary reason that regularly skimping on shuteye can increase your risk of type 2 diabetes is because your hormone levels get thrown out of whack. Specifically, with ongoing sleep loss, less insulin (a hormone that regulates blood sugar) is released in the body after you eat. Meanwhile, your body secretes more stress hormones (such as cortisol), which helps you stay awake but makes it harder for insulin to do its job effectively. The net effect: Too much glucose stays in the bloodstream, which can increase your risk of developing type 2 diabetes.
Hypoglycemia means abnormally low blood sugar (glucose). In patients with diabetes, the most common cause of low blood sugar is excessive use of insulin or other glucose-lowering medications, to lower the blood sugar level in diabetic patients in the presence of a delayed or absent meal. When low blood sugar levels occur because of too much insulin, it is called an insulin reaction. Sometimes, low blood sugar can be the result of an insufficient caloric intake or sudden excessive physical exertion.

If the rapid changes in metabolism following bariatric surgery are a consequence of the sudden change in calorie balance, the defects in both insulin secretion and hepatic insulin sensitivity of type 2 diabetes should be correctable by change in diet alone. To test this hypothesis, a group of people with type 2 diabetes were studied before and during a 600 kcal/day diet (21). Within 7 days, liver fat decreased by 30%, becoming similar to that of the control group, and hepatic insulin sensitivity normalized (Fig. 2). The close association between liver fat content and hepatic glucose production had previously been established (20,22,23). Plasma glucose normalized by day 7 of the diet.
However, the observation that normalization of glucose in type 2 diabetes occurred within days after bariatric surgery, before substantial weight loss (15), led to the widespread belief that surgery itself brought about specific changes mediated through incretin hormone secretion (16,17). This reasoning overlooked the major change that follows bariatric surgery: an acute, profound decrease in calorie intake. Typically, those undergoing bariatric surgery have a mean body weight of ∼150 kg (15) and would therefore require a daily calorie intake of ∼13.4 MJ/day (3,200 kcal/day) for weight maintenance (18). This intake decreases precipitously at the time of surgery. The sudden reversal of traffic into fat stores brings about a profound change in intracellular concentration of fat metabolites. It is known that under hypocaloric conditions, fat is mobilized first from the liver and other ectopic sites rather than from visceral or subcutaneous fat stores (19). This process has been studied in detail during more moderate calorie restriction in type 2 diabetes over 8 weeks (20). Fasting plasma glucose was shown to be improved because of an 81% decrease in liver fat content and normalization of hepatic insulin sensitivity with no change in the insulin resistance of muscle.
Prevention and treatment involve maintaining a healthy diet, regular physical exercise, a normal body weight, and avoiding use of tobacco.[2] Control of blood pressure and maintaining proper foot care are important for people with the disease.[2] Type 1 DM must be managed with insulin injections.[2] Type 2 DM may be treated with medications with or without insulin.[12] Insulin and some oral medications can cause low blood sugar.[13] Weight loss surgery in those with obesity is sometimes an effective measure in those with type 2 DM.[14] Gestational diabetes usually resolves after the birth of the baby.[15]

Managing your blood glucose, blood pressure, and cholesterol, and quitting smoking if you smoke, are important ways to manage your type 2 diabetes. Lifestyle changes that include planning healthy meals, limiting calories if you are overweight, and being physically active are also part of managing your diabetes. So is taking any prescribed medicines. Work with your health care team to create a diabetes care plan that works for you.
Exposure to certain viral infections (mumps and Coxsackie viruses) or other environmental toxins may serve to trigger abnormal antibody responses that cause damage to the pancreas cells where insulin is made. Some of the antibodies seen in type 1 diabetes include anti-islet cell antibodies, anti-insulin antibodies and anti-glutamic decarboxylase antibodies. These antibodies can be detected in the majority of patients, and may help determine which individuals are at risk for developing type 1 diabetes.
In 2017, 425 million people had diabetes worldwide,[8] up from an estimated 382 million people in 2013[17] and from 108 million in 1980.[101] Accounting for the shifting age structure of the global population, the prevalence of diabetes is 8.8% among adults, nearly double the rate of 4.7% in 1980.[8] [101] Type 2 makes up about 90% of the cases.[16][18] Some data indicate rates are roughly equal in women and men,[18] but male excess in diabetes has been found in many populations with higher type 2 incidence, possibly due to sex-related differences in insulin sensitivity, consequences of obesity and regional body fat deposition, and other contributing factors such as high blood pressure, tobacco smoking, and alcohol intake.[102][103]
Regular dental visits are important. Research suggests that treating gum disease can help improve blood sugar control in patients living with diabetes, decreasing the progression of the disease. Practicing good oral hygiene and having professional deep cleanings done by your dentist can help to lower your HbA1c. (This is a lab test that shows your average level of blood sugar over the previous three months. It indicates how well you are controlling your diabetes.)
The 1989 "St. Vincent Declaration"[117][118] was the result of international efforts to improve the care accorded to those with diabetes. Doing so is important not only in terms of quality of life and life expectancy but also economically – expenses due to diabetes have been shown to be a major drain on health – and productivity-related resources for healthcare systems and governments.

The accepted view has been that the β-cell dysfunction of established diabetes progresses inexorably (79,82,83), whereas insulin resistance can be modified at least to some extent. However, it is now clear that the β-cell defect, not solely hepatic insulin resistance, may be reversible by weight loss at least early in the course of type 2 diabetes (21,84). The low insulin sensitivity of muscle tissue does not change materially either during the onset of diabetes or during subsequent reversal. Overall, the information on the inhibitory effects of excess fat on β-cell function and apoptosis permits a new understanding of the etiology and time course of type 2 diabetes.
There are some interesting developments in blood glucose monitoring including continuous glucose sensors. The new continuous glucose sensor systems involve an implantable cannula placed just under the skin in the abdomen or in the arm. This cannula allows for frequent sampling of blood glucose levels. Attached to this is a transmitter that sends the data to a pager-like device. This device has a visual screen that allows the wearer to see, not only the current glucose reading, but also the graphic trends. In some devices, the rate of change of blood sugar is also shown. There are alarms for low and high sugar levels. Certain models will alarm if the rate of change indicates the wearer is at risk for dropping or rising blood glucose too rapidly. One version is specifically designed to interface with their insulin pumps. In most cases the patient still must manually approve any insulin dose (the pump cannot blindly respond to the glucose information it receives, it can only give a calculated suggestion as to whether the wearer should give insulin, and if so, how much). However, in 2013 the US FDA approved the first artificial pancreas type device, meaning an implanted sensor and pump combination that stops insulin delivery when glucose levels reach a certain low point. All of these devices need to be correlated to fingersticks measurements for a few hours before they can function independently. The devices can then provide readings for 3 to 5 days.
That’s a feature that Kelli Rush, 41, a homemaker in Fallon, Nevada, appreciates. She was diagnosed with type 2 diabetes in late 2017, and she’s since made huge strides in improving her A1C. She likes to see the estimated number in the app, and she says it closely matched the lab value when she had the blood test. “It’s nice to know that I’m making progress,” she says.
The Diabetes Control and Complications Trial (DCCT) was a clinical study conducted by the United States National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) that was published in the New England Journal of Medicine in 1993. Test subjects all had diabetes mellitus type 1 and were randomized to a tight glycemic arm and a control arm with the standard of care at the time; people were followed for an average of seven years, and people in the treatment had dramatically lower rates of diabetic complications. It was as a landmark study at the time, and significantly changed the management of all forms of diabetes.[86][130][131]

Dietary factors also influence the risk of developing type 2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[33][34] The type of fats in the diet are important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk.[26] Eating a lot of white rice appears to play a role in increasing risk.[35] A lack of exercise is believed to cause 7% of cases.[36] Persistent organic pollutants may play a role.[37]
"Brittle" diabetes, also known as unstable diabetes or labile diabetes, is a term that was traditionally used to describe the dramatic and recurrent swings in glucose levels, often occurring for no apparent reason in insulin-dependent diabetes. This term, however, has no biologic basis and should not be used.[38] Still, type 1 diabetes can be accompanied by irregular and unpredictable high blood sugar levels, frequently with ketosis, and sometimes with serious low blood sugar levels. Other complications include an impaired counterregulatory response to low blood sugar, infection, gastroparesis (which leads to erratic absorption of dietary carbohydrates), and endocrinopathies (e.g., Addison's disease).[38] These phenomena are believed to occur no more frequently than in 1% to 2% of persons with type 1 diabetes.[39]
It is recommended that all people with type 2 diabetes get regular eye examination.[13] There is weak evidence suggesting that treating gum disease by scaling and root planing may result in a small short-term improvement in blood sugar levels for people with diabetes.[81] There is no evidence to suggest that this improvement in blood sugar levels is maintained longer than 4 months.[81] There is also not enough evidence to determine if medications to treat gum disease are effective at lowering blood sugar levels.[81]
Insulin is a hormone that is produced by specialized cells (beta cells) of the pancreas. (The pancreas is a deep-seated organ in the abdomen located behind the stomach.) In addition to helping glucose enter the cells, insulin is also important in tightly regulating the level of glucose in the blood. After a meal, the blood glucose level rises. In response to the increased glucose level, the pancreas normally releases more insulin into the bloodstream to help glucose enter the cells and lower blood glucose levels after a meal. When the blood glucose levels are lowered, the insulin release from the pancreas is turned down. It is important to note that even in the fasting state there is a low steady release of insulin than fluctuates a bit and helps to maintain a steady blood sugar level during fasting. In normal individuals, such a regulatory system helps to keep blood glucose levels in a tightly controlled range. As outlined above, in patients with diabetes, the insulin is either absent, relatively insufficient for the body's needs, or not used properly by the body. All of these factors cause elevated levels of blood glucose (hyperglycemia).